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Abstract

Representation learning on a knowledge graph (KG) is to em-
bed entities and relations of a KG into low-dimensional con-
tinuous vector spaces. Early KG embedding methods only
pay attention to structured information encoded in triples,
which would cause limited performance due to the structure
sparseness of KGs. Some recent attempts consider paths in-
formation to expand the structure of KGs but lack explain-
ability in the process of obtaining the path representations. In
this paper, we propose a novel Rule and Path-based Joint Em-
bedding (RPJE) scheme, which takes full advantage of the ex-
plainability and accuracy of logic rules, the generalization of
KG embedding as well as the supplementary semantic struc-
ture of paths. Specifically, logic rules of different lengths (the
number of relations in rule body) in the form of Horn clauses
are first mined from the KG and elaborately encoded for rep-
resentation learning. Then, the rules of length 2 are applied
to compose paths accurately while the rules of length 1 are
explicitly employed to create semantic associations among
relations and constrain relation embeddings. Moreover, the
confidence level of each rule is also considered in optimiza-
tion to guarantee the availability of applying the rule to rep-
resentation learning. Extensive experimental results illustrate
that RPJE outperforms other state-of-the-art baselines on KG
completion task, which also demonstrate the superiority of
utilizing logic rules as well as paths for improving the accu-
racy and explainability of representation learning.

1 Introduction
Knowledge graphs (KGs) such as Freebase (Bollacker, Got-
tlob, and Flesca 2008), DBpedia (Lehmann et al. 2015) and
NELL (Mitchell et al. 2018) are knowledge bases which
store factual triples consisting of entities with their relations.
They have achieved rapid development and extensive appli-
cations for various research fields, such as zero-shot recogni-
tion (Wang, Ye, and Gupta 2018), question answering (Hao
et al. 2018) and recommender systems (Zhang et al. 2016).

Typical KGs contain billions of triples but remain to be
incomplete. Specifically, 75% of 3 million person entities
miss a nationality in Freebase (West et al. 2014) and 60%
∗Corresponding author.

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Low-Dimensional Continuous Vector Space

 Path：

Rules of Length 2:

...

...

Rules of Length 1:

David
BornInCountry

USA

Matching

Matching

Matching

David
BornInState

California
StateInCountry

USADavid
BornInState

California
StateInCountry

USA

David
BornInCity

Los Angeles
CityInState

California
StateInCountry

USADavid
BornInCity

Los Angeles
CityInState

California
StateInCountry

USA

BornInState(x,y) BornInCity(x,z)

CityInState(z,y)





BornInCountry(x,y) BornInState(x,z)

StateInCountry(z,y)





Nationality(x,y) BornInCountry(x,y)

Figure 1: A motivating example of our proposed approach
based on Horn rules and a path.

of person entities do not have a place of birth in DBpedia
(Krompaß, Baier, and Tresp 2015). Thus, it is hard to further
introduce KGs into some applications, such as no correct an-
swers for question answering systems based on incomplete
KGs. And the symbolic nature of triple facts in the form of
(head entity, relation, tail entity) makes it challenging to ex-
pand large scale KGs.

In recent years, representation learning on KGs (or known
as KG embedding) such as TransE (Bordes et al. 2013),
TransH (Wang et al. 2014) and TransR (Lin et al. 2015b)
has become popular which intends to embed entities and re-
lations of KGs into a continuous vector space while retain-
ing the inherent structure and latent semantic information of
KGs (Wang et al. 2017). This could benefit a lot for large
scale KG completion.

The above embedding models purely consider the sin-
gle triples. In fact, multi-step paths in KGs always play
a pivotal role in providing extra relationships between en-
tity pairs. For instance, we can utilize a path in the KG
David

BornInState−−−−−−−−→ California
StateInCountry−−−−−−−−−−−→ USA to ex-

pand the knowledge for its corresponding triple fact
(David,Nationality, USA). Both Lin et al. (2015a) and Guu
et al. (2015) succeeded to learn the entity and relation em-
beddings on paths. In their work, the relation embeddings
are initialized randomly and the path representations are



composed via addition, multiplication or Recurrent Neural
Networks (RNN) of the relations along the paths. Since the
path representations are achieved purely based on numerical
calculations in a latent space, such approaches will cause
error propagation and limited accuracy of the paths embed-
dings and further affect the whole representation learning.

An effective way to apply the extra semantic information
in KG embedding is to employ the logic rules in view of
their accuracy and explainability. KALE (Guo et al. 2016)
and RUGE (Guo et al. 2018) both convert the rules into com-
plex formulae modeled by t-norm fuzzy logics to transfer the
knowledge in rules into the learned embeddings. Neverthe-
less, logic rules could maintain their original explainability
only in the symbolic form and such rules actually focus on
the semantic associations as well as the constraints of var-
ious relations, which have not been well exploited for the
triples and paths in KG embedding.

This paper proposes a novel rule-guided composi-
tional representation learning approach named Rule and
Path-based Joint Embedding (RPJE), using Horn rules
to compose paths and associate relations in the semantic
level to improve the precision of learning KG embeddings
on paths and enhance the explainability of our repre-
sentation learning. In allusion to the path as shown in
Figure 1, the rule bodies in two Horn rules of length 2
borninstate(x, y)⇐ bornincity(x, z) ∧ cityinstate(z, y) and
bornincounrty(x, y)⇐ borninstate(x, z) ∧ stateincountry
(z, y) are respectively matched with two segments
of the path, which could be applied to iterately
compose the entire path as a straightforward triple
(David,BornInCountry, USA). Then, the rule body of
length 1 Nationality(x, y)⇐ BornInCountry(x, y)(0.9)
is matched with the relation BornInCountry. There-
fore, two relation embeddings denoting Nationality and
BornInCountry are further constrained to be closer in the
latent space with confidence level 0.9.

In experiments, we evaluate the proposed model RPJE
on four benchmark datasets of FB15K, FB15K-237, WN18,
and NELL-995. Experimental results illustrate that our ap-
proach achieves superior performances on KG completion
task and significantly outperforms state-of-the-art baselines,
which verifies the capability of combining rules with paths
in KG embedding. Our main contributions of this work are:

• To the best of our knowledge, this is the first attempt to in-
tegrate logic rules with paths for KG embedding, endow-
ing our model with both the explainability from semantic
level and the generalization from data level.

• Our proposed model RPJE considers the various types of
rules to inject prior knowledge into KG embedding. It can
use the encoded length-2 rules to start paths composition
rather than with randomly initialized vectors for obtaining
accurate path representations. And the semantic associa-
tions among relations could be created by length-1 rules.

• We conduct extensive experiments on KG completion and
our model achieves promising performances. The influ-
ence of different confidence thresholds of rules demon-
strates that considering confidence of rules in our model
guarantees the effectiveness of using rules and could

achieve good robustness to various confidence thresholds.

2 Related Work
KG embedding models: In recent years, many works have
been done to learn distributed representations for entities
and relations in KGs, which fall into three major categories:
(1) Translational distance model. Inspired by the translation
invariant principle from word embedding (Mikolov, tau Yih,
and Zweig 2013), TransE (Bordes et al. 2013) regards re-
lations as translating operations between head and tail en-
tities, i.e., the formula h + r ≈ t should be satisfied when
triple (h, r, t) holds. (2) Tensor decomposition model. Dist-
Mult (Yang et al. 2015) and ComplEx (Trouillon et al. 2016)
both utilize tensor decomposition to represent each relation
as a matrix and each entity as a vector. 3) Neural networks
model. In NTN (Socher et al. 2013), a 3-way tensor and
two transfer matrices are encoded into multilayer neural net-
work. Among these methods, TransE and plenty of its vari-
ants TransH (Wang et al. 2014), TransR (Lin et al. 2015b)
and TransG (Xiao, Huang, and Zhu 2016) have become
promising approaches for successfully capturing the seman-
tics of KG symbols. However, the above methods merely
consider the facts immediately observed in KGs and ignore
extra prior knowledge to enhance KG embedding.

Path enhanced models: Paths existing in KGs have
gained more attentions to be combined with KG embed-
ding because multi-hop paths could provide relationships
between seemingly unconnected entities in KGs. Path Rank-
ing Algorithm (PRA) (Lao, Mitchell, and Cohen 2011) is
one of the early studies which searches paths by random
walk in KGs and regards the paths as features for a per-target
relation binary classifier. Neelakantan et al. (2015) proposed
a compositional vector space model with a recurrent neu-
ral network to model relational paths on knowledge graph
completion. Guu et al. (2015) introduced additive and mul-
tiplicative interactions between relation matrices in the path.
Lin et al. (2015a) proposed PTransE to obtain the path em-
beddings by composing all the relations in each path. DP-
TransE (Zhang et al. 2018) jointly builds interactions be-
tween the latent features and graph features of KGs to offer
precise and discriminative embedding. However, all these
techniques obtain the path representations via calculating re-
lation embeddings along the paths, which would cause lim-
ited accuracy and lack explainability.

Rule extraction and rule enhanced models: Logic
rules are explainable and contain rich semantic information,
which have shown the power in knowledge inference. The
Inductive Logic Programming algorithms such as XAIL are
available to learn FOL or even ASP-style rules. However,
it is difficult to mine rules from KGs with ILP algorithms
due to open world assumption of KGs (absent information
cannot be taken as counterexamples). Therefore, several rule
mining methods have been developed to extract rules effi-
ciently from large scale KGs, including AMIE (Galárraga et
al. 2013), AMIE+ (Galárraga et al. 2015), RLvLR (Omran,
Wang, and Wang 2018) and CARL (Tanon et al. 2018).

Based on the valid rules, some studies integrate logical
rules in deep neural networks (DNN) and show impres-
sive results in sentence sentiment analysis and named entity



recognition (Hu et al. 2016a; 2016b). Markov logic network
(MLN) (Richardson and Domingos 2006) combines first-
order logic with probabilistic graphical models for reasoning
but it is inefficient to infer via MLN approach and the per-
formance is limited due to some triples cannot be discovered
by any rules. Besides, some works (Gad-Elrab et al. 2016;
Tran et al. 2016) obtain the answer set semantics by directly
using horn rules on KGs for KG completion but lack high
generalization and the main usage of these models is learn-
ing rules.

To improve both the precision and generalization of KG
completion, some of the recent researches attempt to incor-
porate the rules into KG embedding models (Wang, Wang,
and Guo 2015). Minervini et al. (2017) imposed the equiva-
lence and inversion constraints on the relation embeddings.
But this approach considers only two types of constraints
between relations rather than general rules, which might not
always be available for any KG. In both KALE (Guo et al.
2016) and RUGE (Guo et al. 2018), the triples are repre-
sented as atoms and the rules are modeled by t-norm fuzzy
logic for being converted into complex formulae formed
by atoms with logical connectives. However, the above two
methods quantify the rules in embedding which would de-
crease the explainability and accuracy of rules. By eliminat-
ing the complex process of modeling rules to be formulae,
we explicitly and immediately employ the Horn rules to de-
duce the path embeddings and create the semantic associa-
tions between relations.

3 Methodology
We attempt to integrate paths with logic rules to provide
more semantic information in our model. The overall frame-
work of the proposed scheme is shown in Figure 2. Firstly,
we extract the paths and mine the Horn rules from KG,
where the rules of length 1 and 2 are denoted as Rules R1

and Rules R2, respectively (§3.1). Then, we apply Rules R2

to iteratively compose paths and Rules R1 to create the se-
mantic associations of some relation pairs (§3.2). Further-
more, vector initialization is used to transform the entities
and relations in symbolic space into the vector space for
training the KG embeddings. Finally, compositional repre-
sentation learning is implemented for optimizing objective
specific to triples, paths and associated relations pairs (§3.3,
§3.4).

3.1 Logic Rules Extraction from KG
Horn rules could be mined automatically by any KG rule
exaction algorithm or tool. In this paper, we first mine rules
together with their confidence levels denoted as µ ∈ [0, 1]
from KGs. And a rule with higher confidence level has
higher possibility to hold. We limit the maximum length of
rules to 2 for the efficiency of mining valid rules. Thus, rules
are classified into two types according to their length: (1)
Rules R1. The set of length-1 rules is denoted as Rules R1,
which associating two relations in rule body and rule head.
(2) Rules R2. The set of rules with length 2 is denoted as
R2, which could be utilized to compose paths. Some exam-
ples of Rules R1 and Rules R2 are provided in Table 1.

Remark: The inverse version of each relation is always
added in path-based approaches to constrain each path along
one direction and improve the graph connectivity (Zhang et
al. 2018). Therefore, given a triple (h, r, t), a reconstructed
triple (t, r−1, h) is defined to express the inverse relationship
r−1 between entity t and entity h.

3.2 Rules Employment for Compositional
Representation Learning

The Horn rules extracted from KGs could be utilized in two
modules for compositional representation learning, includ-
ing paths composition by Rules R2 and relation pairs asso-
ciation by Rules R1.

Paths Composition by Rules R2. We first implement
paths extraction procedure by PTransE (Lin et al. 2015a) on
KGs, where each path p is extracted together with its re-
liability which is achieved by the path-constraint resource
allocation mechanism and denoted as R(p|h, t) between an
entity pair (h, t). We generate each path set P (h, t) by se-
lecting the paths between the entity pair (h, t) with their re-
liability over 0.01. Specifically, it is essential to form a se-
quential path by atoms of each rule body in Rules R2 for
composing paths. A chain rule is further defined as the rule
which the entity pair linked by the chain in the rule body
is also connected by the relation in the rule head. How-
ever, the rules mined by most of the existing open-source
rule mining systems could not be directly utilized because
these rules are not chain rules. Therefore, we should encode
each rule to form a directed path of its rule body (removing
some of the rules could not be converted as this formaliza-
tion in any case). In total, there are totally 8 different types
of rules conversion modes, as provided in Table 2. Take the
original rule r3(a, b) ⇐ r1(e, b) ∧ r2(e, a) for instance, we
first convert the atom r2(e, a) into r−12 (a, e), and then ex-
change two atoms in the rule body to obtain a chain rule
r3(a, b) ⇐ r−12 (a, e) ∧ r1(e, b), which could be further ab-
breviated to r3 ⇐ (r−12 , r1). Then, a path containing a se-
quence of relations r−12 → r1 could be composed as r3.

To make the best of encoded rules, we should traverse
the paths and conduct the composition operation iteratively
in the semantic level until no relation could be composed
by rules since two relations are composed every time and
the composition result might be composed in the next step.
Considering two types of scenarios in practical paths com-
position procedure: (1) The optimal scenario that all of the
relations in a path could be iteratively composed by Rules
R2 and finally joined together as a single relation between
entity pair. (2) The general scenario that some relations are
unable to be composed based on Rules R2, we will adopt
the numerical operation such as addition for the embeddings
of these relations. Besides, in allusion to the situation that
more than single rule could be matched in the path simulta-
neously, such as two rules U(a, b) ⇐ R(a, c) ∧ T (c, b) as
well as V (a, b) ⇐ R(a, c) ∧ T (c, b) are both activated, the
rule with the highest confidence should be selected to com-
pose the path. Specifically, we define the path composition
result via the above procedure asC(p) which is also denoted
as the path embedding of the path p.
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Figure 2: Overall architecture of our model.

Rules R1 with confidence levels

concept : citylocatedincountry(a, b)⇐ concept : citycapitalofcountry(a, b) 0.86 (extracted from NELL-995)
/location/location/people born here(a, b)⇐ /people/person/place of birth−1(a, b) 1 (extracted from FB15K)
Rules R2 with confidence levels

concept : parentofperson(a, b)⇐ concept : hasspouse(a, e) ∧ concept : fatherofperson(e, b) 1 (extracted from NELL-995)
/film/language(a, b)⇐ /film/directed by(a, e) ∧ /person/language(e, b) 0.81 (extracted from FB15K)

Table 1: A few examples of rules mined from FB15K and NELL-995. The superscript ”-1” means inverse relation.

The original rules Encoded rules

r3(a, b)⇐ r1(a, e) ∧ r2(e, b) r3 ⇐ (r1, r2)
r3(a, b)⇐ r1(e, b) ∧ r2(a, e) r3 ⇐ (r2, r1)
r3(a, b)⇐ r1(e, b) ∧ r2(e, a) r3 ⇐ (r−1

2 , r1)
r3(a, b)⇐ r1(e, a) ∧ r2(e, b) r3 ⇐ (r−1

1 , r2)
r3(a, b)⇐ r1(a, e) ∧ r2(b, e) r3 ⇐ (r1, r

−1
2 )

r3(a, b)⇐ r1(b, e) ∧ r2(a, e) r3 ⇐ (r2, r
−1
1 )

r3(a, b)⇐ r1(e, a) ∧ r2(b, e) r3 ⇐ (r−1
1 , r−1

2 )
r3(a, b)⇐ r1(b, e) ∧ r2(e, a) r3 ⇐ (r−1

2 , r−1
1 )

Table 2: The list of conversion mode for Rules R2. The left
half are the original rules directly extracted from KG, and
the right half are the encoded rules. In Table 2, variables
a, b, e can be substituted by entities, where r1, r2 are denoted
as relations in rule body and r3 is the relation in rule head.

Relations Association by Rules R1. On account of the
Rules R1, where a relation r1 may have more semantic sim-
ilarity with its directly implicating relation r2 when the rule
∀x, y : r2(x, y) ⇐ r1(x, y) holds. The rules in the form
of (a, r2, b) ⇐ (b, r1, a) need to be encoded as (a, r2, b) ⇐
(a, r−11 , b) for representation learning. Hence, in the training
process, the embeddings denoting a pair of relations which
appear simultaneously in Rules R1 should be constrained
to be closer than the embeddings of two relations that mis-
match any rule.

3.3 Compositional Representation Modeling
Along with the strategy of translation-based algorithms, for
each triple (h, r, t), we define three energy functions to re-

spectively model correlations with the direct triple along
with the typical translation-based methods, the path pair us-
ing Rules R2 and the relation pair employing Rules R1:

E1(h, r, t) = ‖h + r− t‖ (1)

E2(p, r) = R(p|h, t)(
∏

µi∈B(p)

µi)‖C(p)− r‖ (2)

E3(r, re) = ‖r− re‖ (3)

where E1(h, r, t) is defined with the less score if triple
(h, r, t) holds. E2(p, r) denotes the energy function eval-
uating the similarity between path p and relation r, and
R(p|h, t) represents the reliability of the path p from the en-
tity pair (h, t) and is calculated the same as in PTransE (Lin
et al. 2015a). h, r and t are the embeddings of head entity,
relation and tail entity, respectively. C(p) denotes the com-
position result of the path p, which is obtained according
to the paths composition procedure explained in §3.2. And
B(p) = {µ1, . . . , µn} represents the set of confidence lev-
els corresponding to all the rules in Rules R2 employed in
the process of composing the path p. E3(r, re) is the energy
function indicating the similarity of relation r and another
relation re and should be assigned with less score if re is the
relation implicated by the relation r with Rules R1. re is the
embedding of the relation re.

3.4 Objective Formalization
With the open world assumption (Drumond, Rendle, and
Schmidt-Thieme 2012), we introduce the pairwise rank-
ing loss function to formalize our optimization objective of



RPJE for training, which is defined as

L =
∑

(h,r,t)∈T

[L1(h, r, t) + α1

∑
p∈P (h,t)

L2(p, r)

+ α2

∑
re∈D(r)

L3(r, re)] (4)

In Eq.4, D(r) is defined as the set of relations all deduced
from r on the basis of Rules R1, and re is any relation in
D(r). P (h, t) denotes all the paths linking entity pair (h, t),
and p is one of the path in P (h, t). L1(h, r, t), L2(p, r)
and L3(r, re) are three margin-based loss functions consid-
ering the energy functions in Eqs.1,2,3 to measure the ef-
fectiveness of representation learning in regard to the direct
triple (h, r, t), the path pair (p, r) as well as the relation pair
(r, re), respectively, which are defined as follows:

L1(h, r, t) =
∑

(h′,r′,t′)∈T−
max(0, γ1 + E1(h, r, t)− E1(h

′, r′, t′))

(5)

L2(p, r) =
∑

(r′)∈T−
max(0, γ2 + E2(p, r)− E2(p, r

′) (6)

L3(r, re) =
∑

(r′)∈T−
max(0, γ3 + βE3(r, re)− E3(r, r

′)) (7)

where the function max(0, x) is defined to obtain the max-
imum value between 0 and x. γ1, γ2, γ3 are three positive
hyper-parameters denoting each margin of the loss functions
in Eqs.5,6,7, respectively. The weight of triples is fixed to 1,
and α1, α2 are two hyper-parameters respectively weight-
ing the influence of paths and relation pairs embedding con-
straint. β denotes the confidence level of the rule in RulesR1

associating r and re. The confidence levels of all the rules
are considered to be penalty coefficients in optimization. T
represents a set that contains all the positive triples observed
in KG. Following the negative sampling method as in (Bor-
des, Weston, and Bengio 2014), T− contains the negative
triples reconstructed via randomly replacing the entities and
relations in T and removing the triples already exist in T .

T− = (h′, r, t) ∪ (h, r′, t) ∪ (h, r, t′) (8)

To solve the optimization, we utilize mini-batch stochas-
tic gradient descent (SGD). And considering the training ef-
ficiency, the paths are limited no longer than 3 steps.

4 Experiments
4.1 Experiment Settings
Datasets and Rules. We evaluate our model on four typi-
cal datasets: FB15K and FB15K-237 both extracted from the
large-scale Freebase (Bollacker, Gottlob, and Flesca 2008),
WN18 extracted from WordNet (Miller 1995) and NELL-
995 extracted from NELL (Mitchell et al. 2018). Note that
FB15K-237 contains no inverse relation and hence it is hard
to learn embeddings by these mutually independent rela-
tions, so FB15K and FB15K-237 are always regarded as two
distinguishing datasets. Statistics of datasets used are shown

Dataset #Rel #Ent #Train #Valid #Test

FB15K 1,345 14,951 483,142 50,000 59,071
FB15K-237 237 14,541 272,115 17,535 20,466

WN18 18 40,943 141,442 5,000 5,000
NELL-995 200 75,492 123,370 15,000 15,838

Table 3: Statistics of datasets used in the experiments. Rel
denotes relation and Ent denotes entity.

Datasets Rule
Types

Various Confidence Thresholds
#0.5 #0.6 #0.7 #0.8 #0.9

FB15K R1 1,157 975 899 767 586
R2 643 632 586 535 229

FB15K-237 R1 93 89 81 76 40
R2 359 309 292 253 232

WN18 R1 17 17 17 17 16
R2 89 80 77 24 0

NELL-995 R1 132 96 58 40 15
R2 326 266 201 161 105

Table 4: Statistics of the encoded rules in various confidence
thresholds from the four datasets. Note that the rules in Rules
R1 extracted from WN18 have the nearly same amount for
their confidence levels all exceed 0.8.

in Table 3. We evaluate the performance of our approach
and other baselines on KG completion task, which is specif-
ically formulated as entity prediction and relation prediction.
Specifically, entity prediction aims to complete a triple with
one entity missing while relation prediction aims to predict
a relation given head and tail entities.

Our scheme is readily incorporable to any rule mining
tool. And we choose AMIE+ (Galárraga et al. 2015) for its
convenience and fast-speed to mine rich rules with an alter-
native confidence threshold on different databases. The con-
fidence thresholds of rules are selected in the range of [0,1]
with the step size 0.1 to search the best performance of rules
on datasets. Table 4 lists the statistics of rules with various
confidence thresholds in the range of [0.5, 0.9] mined from
FB15K, FB15K-237, WN18 as well as NELL-995, which
have been encoded for representation learning.

Evaluation Protocols. Three principle assessment metrics
are focused on: the mean rank of correct entities (MR), the
mean reciprocal rank of correct entities (MRR) and the pro-
portion of test triples for which correct entity is ranked in the
top n predictions (Hits@n). And an evaluation result should
achieve lower MR, higher MRR and Hits@10. Moreover,
the “filtered” setting eliminates the reconstructed triples that
could be observed in the KG, yet the “raw” setting does not.
To achieve these metrics, We define the score function for
calculating the scores for reconstructed triples as follows:

Q(h,r, t) = ‖h + r− t‖

+ α1

∑
p∈P (h,t)

R(p|h, t)(
∏

µi∈B(p)

µi)‖C(p)− r‖ (9)



As shown in Eq.9, the Rules R2 should be utilized for com-
posing paths in testing process. We rank the scores in de-
scending order.

Baselines for Comparison. To verify the performance
of our approach, we select several involved state-of-the-
art models to implement KG completion, including three
types of baselines: (1) Embedding methods only consider-
ing triple facts: TransE (Bordes et al. 2013), TransH (Wang
et al. 2014), TransR (Lin et al. 2015b), STransE (Nguyen
et al. 2016), TransG (Xiao, Huang, and Zhu 2016), TEKE
(Wang and Li 2016), R-GCN+ (Michael et al. 2018), KB-
LRN (Garciaduran and Niepert 2017), ConvE (Dettmers et
al. 2018). (2) Path-based models: PTransE (Lin et al. 2015a)
and DPTransE (Zhang et al. 2018). (3) Rule enhanced mod-
els: KALE (Guo et al. 2016) and RUGE (Guo et al. 2018).
We use the best results presented in their original papers and
also implement PTransE and RUGE by their source codes.

Experimental Settings. To guarantee fair comparison, we
adopt the following evaluation settings in our work: (1) 100
mini-batches are created on datasets. (2) The entity and re-
lation embeddings are initialized randomly and limited to
unit vectors. (3) Following the same configurations as many
prevailing baselines, the learning rate is chosen as 0.001,
γ1 and γ2 are selected as γ1 = γ2 = 1, the embedding
dimension is set to 50 for WN18 and 100 for other three
datasets considering only 18 relations exist in WN18, dis-
similarity is selected as L1 and training epochs is set to 500.
In addition, we employ a grid search to select the other op-
timal hyper-parameters. We manually tune the margin γ3 in
{1, 1, 5, 2, 2.5, 3}, and the weight coefficients α1, α2 both in
{0, 5, 1, 1.5, 2, 3, 5}. The best models are selected on valida-
tion sets. The resulting optimal of margin γ3 and the weight
coefficients α1, α2 are assigned to: γ3 = 1, α1 = 1, α2 = 3.

4.2 Influence of Confidence Levels and Path Steps
In this subsection, we experimentally examine the im-
pact of the two important parameters in our proposed
scheme, namely the confidence levels of the rules and
path steps. It indicates that our model is robust to the
noisy rules for the rules with low confidence will be
filtered out according to the appropriate confidence
threshold. For instance, based on the confidence thresh-
old 0.7, the rule AthleteP laysInLeague(x, y) ⇐
AthleteledTeam(x, z) ∧ TeamPlaysInLeague(z, y)
with confidence 0.96 will be used in path composi-
tion, but the rule PersonHasJobPosition(x, y) ⇐
HasSibling(x, z) ∧ PersonHasJobPosition(z, y) with
confidence 0.6 will be removed. It is also known that se-
lecting a confidence threshold is a trade-off between higher
confidence with more rules. We investigate the performance
influence by varying the confidence thresholds in the range
of [0.1, 1.0] with step 0.1. From Figure 3, we can observe
that the confidence thresholds of 0.7 and 0.8 achieve the
best tradeoffs. Furthermore, RPJE outperforms PTransE
with the confidence threshold in a broad range of [0.4, 1.0]
which illustrates the rules exploited in our model will be
effective as long as the confidence threshold is selected in
a moderate range. Particularly, RPJE-min obtains worse

Figure 3: Performance comparison of various confidence
thresholds and path steps limitation.

Models MR MRR Hits@ 10(%)
raw filtered filtered raw filtered

TransE 243 125 0.4 34.9 47.1
TransH 212 87 - 45.7 64.4
TransR 198 77 - 48.2 68.7
STransE 219 69 0.543 51.6 79.7
R-GCN+ - - 0.696 - 84.2
KB-LRN - 44 0.794 - 87.5
ConvE - 51 0.657 - 83.1

PTransE 200 54 0.679 51.8 83.4
DPTransE 191 51 - 58.1 88.5

KALE - - 0.523 - 76.2
RUGE 191 71 0.768 54.3 86.5

RPJE 186 40 0.816 55.0 90.3

Table 5: Entity prediction results on FB15K. The missing
values indicate the scores not reported in the original work.
The best score is in bold, and the second best in underline.

performance with lower confidence threshold due to more
incorrect rules employed will cut down the accuracy of
representation learning.

Additionally, we could compare the performance of dif-
ferent path steps limitation between steps 2 and 3. Figure 3
illustrates the entity prediction results considering different
confidence thresholds achieved by RPJE-S2 (2-step path),
RPJE-S3 (3-step path), RPJE-min (RPJE ignoring the confi-
dence of rules) and PTransE on FB15K. These results verify
the confidence levels’ contribution to representation learn-
ing. On account of same configurations, RPJE employing
paths with maximum 2 steps consistently outperforms that
with maximum 3 steps. The reason might be that longer
paths may cause lower accuracy in paths composition, which
will be studied in the future work. Therefore, we select the
confidence threshold as 0.7 and the path steps as 2 for the
best setting in the following results.



Models Head Prediction (Hits@10) Tail Prediction (Hits@10)
1-1 1-N N-1 N-N 1-1 1-N N-1 N-N

TransE 35.6 62.6 17.2 37.5 34.9 14.6 68.3 41.3
TransH 66.8 87.6 28.7 64.5 65.5 39.8 83.3 67.2
TransR 78.8 89.2 34.1 69.2 79.2 37.4 90.4 72.1
STransE 82.8 94.2 50.4 80.1 82.4 56.9 93.4 83.1
TEKE 78.8 89.3 54.0 81.7 79.2 59.2 90.4 83.5
TransG 93.0 96.0 62.5 86.8 92.8 68.1 94.5 88.8
PTransE 91.0 92.8 60.9 83.8 91.2 74.0 88.9 86.4

DPTransE 92.5 95.0 58.0 86.6 93.5 71.1 93.9 88.2

RPJE 94.2 96.5 70.4 91.6 94.1 83.9 95.3 93.3

Table 6: Entity prediction results on FB15K by mapping properties of relations (%) with filtered setting.

Models MR Hits@1(%)
raw filtered raw filtered

TransE 2.79 2.43 68.3 87.2
PTransE 1.81 1.35 69.5 93.6
RUGE 2.47 2.22 68.8 87.0

RPJE 1.68 1.24 70.1 95.3

Table 7: Relation prediction results on FB15K. We use
Hits@1 for better comparison because Hits@10 of all the
models exceed 95%.

4.3 Evaluation Results on FB15K and FB15K-237
In this section, we first evaluate entity prediction and relation
prediction of the proposed RPJE with a variety of baselines
on FB15K. From Table 5, it can be observed that: (1) Our ap-
proach RPJE achieves superiority compared with other base-
lines, and most of the improvements are statistically signifi-
cant. This demonstrates that RPJE learns more reasonable
embeddings for KGs via using logic rules in conjunction
with paths. (2) In particular, RPJE outperforms PTransE on
each metric, which indicates the superiority of introducing
logic rules for providing higher accuracy in paths compo-
sition and learning better path embeddings. (3) Compared
to the rule-based baselines KALE and RUGE, RPJE obtains
the improvements of 56.0%/6.3% on MRR and 18.5%/4.4%
on Hits@10 (filtered), which demonstrates the effectiveness
of explicitly employing rules for preserving more semantic
information and further integrating paths.

Table 6 shows the evaluation results of predicting entities
by various types of relations. We can observe that: 1) RPJE
outperforms all baselines significantly and consistently in
regard to all the relation categories. Compared to the best
performing baseline TransG, RPJE achieves an average im-
provement of 4.2% in head entities prediction and 6.5% in
tail entities prediction. 2) More interestingly, on the two
toughest tasks of predicting head entities of N-1 relation and
predicting tail entities of 1-N relation, our approach achieves
the best performance improvements approximately 12.6%
and 13.4% compared to the best baselines, respectively.

The results of relation prediction are shown in Table 7.
Three typical models representing three types of baselines
are implemented. The results illustrate that RPJE outper-

Models MR MRR Hits@10(%)

TransE 347 0.294 46.4
R-GCN+ - 0.249 41.7
KB-LRN 209 0.309 49.3
ConvE 246 0.316 41.7

PTransE 302 0.363 52.6
RUGE 488 0.164 34.9

RPJE 207 0.470 62.5

Table 8: Entity prediction results on FB15K-237.

Models WN18 NELL-995
MRR Hits@10(%) MRR Hits@10(%)

TransE 0.495 93.4 0.219 35.2
PTransE 0.890 94.5 0.304 43.7
RUGE 0.943 94.4 0.318 43.3

RPJE 0.946 95.1 0.361 50.1

Table 9: Entity prediction results on WN18 and NELL-995.

forms baselines in all metrics. It verifies that paths could pro-
vide extra relationships for entity pairs and rules can further
create more semantic association for relations to improve re-
lation embeddings and benefit for relation prediction.

Furthermore, we implement the experiments on dataset
FB15K-237. Since FB15K-237 is constructed up to date,
only a minority of existing works have implemented their
experiments and show evaluation results on this dataset,
which can be selected as baselines. As shown in Table
8, RPJE obtains the best performance with approximately
29.5% improvement compared to PTransE on MRR and
26.8% improvement compared to KB-LRN on Hits@10. Al-
though no inverse relation could be observed in FB15K-237,
we could employ Horn rules to provide significant supple-
ments for building semantic associations of relations.

4.4 Evaluation Results on WN18 and NELL-995
We also test the models on datasets WN18 and NELL-995.
Three types of typical models are selected as baselines. Few
rules can be mined from WN18 due to extremely limited
amount of relations. And very parse paths can be extracted



Models MR MRR Hits@ 10(%)
raw filtered filtered raw filtered

RPJE 186 40 0.816 55.0 90.3
-PaRu2 205 63 0.453 49.3 72.1
-Ru1 193 47 0.812 54.5 90.0

Table 10: Ablation study by removing paths and length-2
rules as well as length-1 rules.

The Pursuit 

of Happiness

Columbia 

Pictures

English

Will Smith

FilmLanguage

FilmLanguage

United 

States

1

CountrySpokenIn −

-1
ServiceLocation

①

② 

Figure 4: An example of the explainable relation prediction.

from NELL-995 because entities are far more than relations
on this dataset. Even so, our model RPJE achieves consistent
and significant improvements over other baselines as shown
in Table 9. It illustrates the superiority of our approach for
representation learning on various large scale KGs. On the
other hand, considering the performance gains on FB15K
are more than that on WN18, which is because more rules
provide more semantic information to RPJE to use. As can
be expected, our model RPJE will obtain better performance
on datasets which implies more rules and paths.

4.5 Ablation Study
To verify the effectiveness of different components of RPJE,
we implement the ablation study of entity prediction on
FB15K by removing the paths as well as the length-2 rules at
one time (-PaRu2), and the rules of length 1 (-Ru1) from our
integrated model, respectively. More specifically, -PaRu2
means removing E2/L2 in Eq. 2/6 and -Ru1 means remov-
ingE3/L3 in Eq. 3/7. As shown in Table 10, we can conclude
removing each component will lead to performance degra-
dation especially when removing the paths and the rules of
length 2 changes the results significantly.

4.6 Case Study
As shown in Figure 4, considering a relation prediction task
with the given head entity ThePursuitofHappiness and tail
entity English, the result FilmLanguage is obtained by our
model RPJE. Particularly, this result can be explained by
RPJE with paths and rules: for the 2-steps path, the rule

filmlanguage(x, y)⇐ castactor(x, z) ∧ personlanguage(z, y)

with the confidence 0.81 is activated to compose the path
into the prediction result FilmLanguagewhile providing the
confidence level 0.81 of this result. For the path of 3 steps,
the intermediate composition result CountrySpokenIn−1

is obtained by calling Rules R2 and further employed to
achieve the relation prediction result FilmLanguage via

embeddings on the reconstructed path containing the rela-
tion CountrySpokenIn−1.

5 Conclusion and Future Work
In this paper, we proposed a novel model RPJE to learn KG
embeddings by integrating triple facts, Horn rules and paths
in a unified framework to enhance the accuracy and the ex-
plainability of representation learning. The Experimental re-
sults on KG completion verified the rules with confidence
levels are significant in improving the accuracy of compos-
ing paths and enhancing the association between relations.

For future work, we will investigate some other poten-
tial composition operations such as Long Short Term Mem-
ory networks (LSTM) with attention mechanism which may
benefit for long paths. And we will explore to push the em-
bedding information back from RPJE to rule learning with a
well-designed closed-loop system.
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